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Abstract 

A least-squares procedure to refine the best-plane 
parameters is described. By linearizing the quadratic 
constraint imposed on the components of the plane 
normal, it is shown that the error matrix (variance- 
covariance matrix) of the best-plane parameters can be 
obtained in a straightforward way from the coefficients 
of the normal equation. The error matrix thus obtained 
is useful for the estimation of the uncertainties in 
atom-to-plane distances. Numerical examples are given 
to illustrate the procedure. 

Introduction 

A least-squares method to determine the best plane 
through a set of points has been presented by 
Schomaker, Waser, Marsh & Bergman (1959). Blow 
(1960) has proposed transforming their equations into 
an orthonormal metric, and Hamilton (1961) has intro- 
duced a non-diagonal weight matrix. However, because 
of the quadratic constraint imposed on the components 
of the plane normal, the least-squares problem leads to 
an eigenvalue equation, which makes a direct evaluation 
of the error matrix (variance-covariance matrix, or 
moment matrix) of the parameters difficult. More 
recently, Scheringer (1971) has shown by introducing 
the two Eulerian angles of the plane normal that the 
solution can be given by using standard least-squares 
routines. On the other hand, Waser, Marsh & Cordes 
(1973) have derived formulas for the error matrix by 
applying the standard error-propagation formula to the 
isotropic positional variances of the atoms to which the 
plane has been fitted. In the present treatment, the 
quadratic constraint is expanded into a linear form, 
which makes it possible to derive the error matrix 
directly from the coefficients of the normal equation. 

Least-squares refinement 

Let us consider the plane through n atoms 

r ( ° = x ( 0 a + y ( 0 b + z ( 0 c ,  i = 1 , 2  . . . .  ,n. (1) 
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If we define the plane by its unit normal 

m = mta* + m2b* + m3c*, (2) 

and by its distance do from the origin, the atom- 
to-plane distances are given by 

d t° = m i x  ~° + m2y (0 + m3z tO - d 0, i = 1,2,..., n. (3) 

Then, our least-squares problem is to minimizer 

S -= aWd 
under the constraint 

where 

(4) 

a -  (d (1) d(2)...d(n)), (6) 

f i = ( m ,  m2 ma d0 )=( rh  do), (7) 

Ill G* 
H *  - -  • (8) 

0 0 0 

G *  is the metric tensor for the reciprocal lattice. 
The weight matrix W in (4) should be chosen as 

W = dM-1,  (9) 

w h e r e  aM is the error matrix for the perpendicular 
distances of the atoms from the plane. Derivation of aM 
from the error matrix for the atomic positional 
parameters has been described in detail by Hamilton 
(1961). W is a diagonal matrix unless atom-atom 
correlations are taken into account. 

If we use the constraint (5) as it is, minimization of S 
leads to an eigenvalue equation (Schomaker, Waser, 

"~ In the following, matrix notation similar to that introduced by 
Hamilton (1961) will be used. a lower-case bold Univers symbol 
(e.g. d) denotes a column matrix, so that its transpose (d) is a 
row matrix. An upper-case bold Univers symbol (e.g. W) denotes 
a square or a rectangular matrix. 
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r h G * m  = f i H * n  = 1, (5)  
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Marsh & Bergman, 1959; Blow, 1960; Hamilton, 1961; 
Scheringer, 1971). In the present treatment, (5) is 
expanded into a linear form around approximate values 
of the plane parameters n (°). n c°) may be obtained from 
three arbitrary atoms defining the plane or by the 
'prevalent incorrect method' discussed in detail by 
Schomaker et al. (1959). We replace fi in (5) by 

fi = (~(o)  _ A6~ d~oO) _ Ado) = tic0) _ Aft (10) 

and ignore the quadratic terms in An. Then, (5) reduces 
to a linear equation 

ftdn = 0, (11) 

where 

h = H*n (°), (12) 

and n (°) is assumed to be normalized: 

fiC°)H*n(°) = tin (°) = 1. (13) 

Since d o is independent of the linearization, its 
approximate value d~ °) need not be known; it may be 
put equal to zero. 

Now, the function to be minimized may be written 

F - -  ½aWd + 217tdn, (14) 

where 2 is an undetermined multiplier. Minimization of 
F with respect to A n gives the normal equation 

CAn = YWd (°) - hA, (15) 

where 

(16) 

Lx'"' L9 
d (°) -= Yn (°), (17) 

C--- YWY. (18) 

The normal equation (15) combined with the linearized 
constraint (11) can easily be solved for I and An to give 

1 = (tiC-lh) -1 t iC- 'YWd (°) (19a) 

= ( t iC- 'h)- ' ,  (19b) 

An = BC-'~'Wd (°) (20a) 

= B n  (°), (20b) 

where 

I--  2C-'hti. (21) 
I is the 4 x 4 unit matrix. Compared to the standard 
least-squares solution without constraints, an additional 
matrix B has appeared in the solution (20a). 2 as 
evaluated by (19) is equal to S in (4) after the 
least-squares refinement 

S = dWd = fiCn = / f i h  = 1. (22) 

Since the present procedure employs a linear 
approximation, iteration cycles must be repeated until 
changes in the best-plane parameters become suffic- 
iently small. It should be noted, however, that iteration 
is necessary also in Hamilton's (1961) scheme in order 
to refine the weight matrix. 

The matrix C in (18) turns out to be singular in some 
special cases; it happens for example when the plane is 
defined with only three atoms. Since the inverse matrix 
C- '  is not defined in such cases, the following relations 
involving C-'  are not valid. We have to eliminate one of 
the variable parameters by using the constraint relation 
(11). Then, the problem reduces to "a standard linear 
least-squares problem without constraints. 

Estimation of  errors 

The error matrix (variance-covariance matrix) of the 
best-plane parameters can be evaluated directly from 
(20a) 

"M = BC-'~'VVdMWYC-Xl3 
= BC--'13 = BC-'. (23) 

We note in (23) that the error matrix C- '  for the 
ordinary solution without constraints is modified by B 
because of the constraint. 

It is sometimes necessary to test statistical sig- 
nificance of an atom-to-plane distance d c0 against its 
standard deviation o(d")) .  Since the errors in the best- 
plane parameters are now known, they should also be 
taken into account in the estimation of a ( d  ")) as well as 
the covariance a M  u for the atomic positional 
parameters. 

Since d c° is expressed in matrix notation as 

d (0 = 9~on, (3') 

o2(d (0) = aM.  + 9 (0" My  (0. (24) 

The contribution of the second term in (24) is especially 
important when the atom has a small positional error 
aM,, and is away from the center of the atomic group 
defining the plane. 

Waser, Marsh & Cordes (1973) have derived a 
formula for the standard deviation for the dihedral 
angle between two best planes. The corresponding 
formula can easily be derived from the error matrix "171. 
Since the dihedral angle 0 between the two best planes 
with unit normals m and m' is defined by 

cos e =  rhG*m', (25) 

the standard deviation for 8 is given by 

1 
02(8) = sin2~- ~ (rh 'G*'nMG*m ' + daG*'n'MG*m), 

(26) 
where the 3 x 3 matrix m M is the m part of the 4 x 4 
matrix "M, and correlation between m and m'  is 
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ignored. As was pointed out by Waser et al. (1973) 
with respect to their formula, (26) becomes an 
undetermined 0/0 when 0 is zero (i.e. when m = m'). 
This can be seen from the relation 

r h G * m M G * m  = f i H * n M H * n  = I ~ " i h  = 0, (27)  

where the difference between n and n (°) is ignored. 
When 0 approaches zero, however, we see that the 
errors in the unit normals m and m' directly contribute 
to the error in O. From the relations 

IAml 2 = drhG*Am, (28a) 

lain' 12 = ArW G'Am' ,  (28b) 

we obtain 

tr2(0) = Trace (G*'nM) + Trace (G*m'M). (29) 

In practice, the following criterion will be useful for the 
choice between the expressions (26) and (29) 

a(O) = go(O) if O < o0(~. (30) 

If we are concerned with the angle ~0 between the 
plane normal m and a unit vector defined in the direct 
lattice 

I =  lla + 12b + lac, (31) 

the angle and its standard deviation can be calculated 
from 

cos tp= hi ,  (32) 

1 
0"2((0) -- sin 2 ~0 ([ 'n i l  + rntMm)' (33) 

where 1M is the error matrix for I. 

Numerical .examples 

Computational considerations 

A Fortran program was written and applied to 
several examples. Calculations were performed on a 
FACOM 230-75 computer of this institute. It has been 
noted that the symmetry of the "M matrix evaluated as 
B12 -1 in (23) is a useful cheek for the precision of 
computation. In fact, most of the matrix manipulations, 
especially the inversion of the 13 matrix, should be 
handled in double precision in order to ensure sufficient 
precision. 

If a computer program in the scheme of Hamilton 
(1961) is already available, it can easily be modified to 
evaluate the error matrix "M from (21) and (23). 
Modification of a program in the scheme of Schomaker 
et aL (1959) is a little more difficult, because the matrix 
12 has not been set up in this scheme. 

Example of  Hamilton (1961) 

Let us first take the two-dimensional example of 
Hamilton: a problem of fitting a line to four points in 
the plane. Hamilton has demonstrated the use of a 
non-diagonal weight matrix in this example. The 
coordinate axes are orthogonal with unit length, so that 

H* -- 1 . (8) 

0 

If we start from the same approximate parameters as 
assumed by Hamilton: 

r i o ) -  (m~0) m~O) d~0O))= (0.1961 -0-9806  0.0), 

the 13 matrix (18) is already given in the paper. 
Then 

[ 0 . 1 4 9 9 1 - 0 . 5 1 8 0 1 - 0 . 2 2 2 4 4 ]  

12-1= 1_0.51801 2.67207 1.21114 / x 10 -1, 

[--0.22244 1.21114 0.55842]  

f i=(0-1961 -0-9806 0-0), (12) 

2 = 3.60441, (19) 

, [ 0 " 9 6 2 0 2 0 " 1 8 9 9 3  0-0]  

B = | 0 . 1 9 2 3 8  0.03798 0.0 , (21) 

L0.08703 -0 .43519  1.0 

Af t=(0 .0024  0.0005 0.4438), (20b) 

f i= (0 .1937  -0 .9811  -0.4438).  (10) 

The solution n is in agreement with that of Hamilton 
within _+ 1 in the last digit; one cycle of refinement was 
sufficient in this example. The effect of the constraint 
on the least-squares solution is apparent on the matrix 
B, which is significantly deformed from the unit matrix. 
The error matrix of the parameters is 

[ 0 . 4 5 8 3 0 . 0 9 1 7 0 . 1 6 0 4 1  

n M = [ 0 " 0 9 1 7  0-0183 0.0321/×10-2, (23) 
/0.1604 0.0321 0.1199_] 

from which the standard deviations of the parameters 
are 

(a(ml) a(m2) 0(d0))=(0.0677 0.0135 0.0346), 

and correlation between m 1 and m z is perfect as 
expected, 

"Mn/a(ml)a(m2) = 1.00. 

Example of  Waser et al. (19 73) 

The example of Waser et al. was next taken up in 
order to check the agreement between the results 
obtained by the two methods. The unit-cell dimensions, 
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the atomic coordinates, and their isotropic standard 
deviations were taken from the paper of Waser et al. 
Calculations were performed for the same two planes 
as used by them. In this case, the weight matrix W is 
diagonal with Wit = 1/(o(/)) 2, where 0(0 is the isotropic 
standard deviation. The starting values of the best- ml 
plane parameters were obtained by the 'incorrect m 2 
method' with unit weights. Iteration converged very m3 
quickly for both planes; the parameters changed about do 
the order of the standard deviations in the first cycle, 
but the shifts in the second cycle were almost zero (less 
than 0.3 % of the standard deviations). 

The best-plane parameters with their standard m~ 
deviations are given in Table 1, and the error matrix for m2 

m3 
the parameters is given in Table 2. The standard do 
deviations for the origin-to-plane distances, 0.0032 and 
0.0028 A for planes 1 and 2 respectively, are in exact 
agreement with those obtained by Waser et al. A direct 
comparison of the other results is difficult, because 
different coordinate axes were used in the two 
treatments. The atom-to-plane distances with their 
standard deviations estimated from (24) are given in 
Table 3. It can be seen from the table that the standard c(4)* 
deviations for the atoms away from the plane are larger c(9)* 

N(1)* 
than those for the atoms defining the plane, c(2)* 

The dihedral angle 0 between planes 1 and 2, and its c(3)* 
standard deviation tr(O) were evaluated from (25) and c(8) 
(26) to give 0 = 2.070 and tr(0) = 0.074 °. They are in c(7) 
good agreement with the results, 0 = 2.065 and o(O) = C(6) 
0.074 °, reported by Waser et al. The small difference c(5) 
in 0 can be ascribed to the slightly different weighting 
schemes adopted in the two treatments. Waser et al. 
have reported also the value tr(0) = 0.085 ° which was 
obtained by including the effect of the atoms shared by 
the two planes. However, the effect may be neglected 

Table 1. Best-plane parameters with their standard 
deviations in parentheses (A) 

Plane I Plane 2 

m I 2.366 (9) 2.688 (8) 
m 2 7.345 (7) 7.277 (7) 
m 3 7.173 (6) 6.960 (6) 
d o 10.150 (3) 10.118 (3) 

Table 2. Error matrix (variance-covariance matrix) 
for  the best-plane parameters (x l0 s) in A 2 

Plane 1 

Plane 2 

ml m2 m3 do 

7555 -1912 -4675 --217 
-1912 5521 -1211 2248 
--4675 --1211 4031 -909 
--217 2248 -909 1024 

m~ m 2 m 3 d o 
5740 -1778 -3685 -1517 

-1778 4629 -819 1601 
-3685 -819 3308 431 
-1517 1601 431 782 

Table 3. Atom-to-plane distances with their standard 
deviations in parentheses (A) 

The atoms defining the plane are marked with an asterisk. 

Plane 1 Plane 2 

0.003 (2) C(4)* 0.007 (2) 
0.005 (2) C(9)* -0.014 (2) 

-0.007 (2) C(8)* 0.013 (3) 
0.013 (2) C(7)* 0.001 (3) 

-0.009 (2) C(6)* -0.010 (3) 
0.081 (3) C(5)* 0.0O4 (2) 
0.096 (4) N(1) 0.012 (3) 
0.062 (4) C(2) 0.077 (3) 
0.026 (3) C(3) 0.047 (3) 

for most purposes where the standard deviation 
multiplied by a factor of two to three is used for 
comparison. 
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